Automated OSINT analysis engine for pr-cybr’s rav3n-n3t framework — synthesizes collected intelligence into actionable reports prepared for publication by rav3n-net.
Muninn (named after Odin’s raven of memory) processes OSINT data collected by Huginn and transforms it into actionable intelligence reports. It analyzes the raw data, identifies key findings, and generates comprehensive markdown reports ready for publication by RavenNet.
The Muninn project follows a phased approach:
Huginn (Data Collection) → Muninn (Analysis) → RavenNet (Publishing)
muninn/
├── src/
│ └── muninn/
│ ├── __init__.py
│ ├── analyze.py # Main analysis orchestration
│ ├── data_loader.py # Load Huginn output data
│ ├── summarizer.py # AI-powered summarization
│ └── report_generator.py # Markdown report generation
├── data/
│ ├── input/ # Huginn output data
│ └── output/ # Generated reports
├── config/
│ └── config.yaml # Configuration settings
├── tests/
│ └── test_analyze.py
├── requirements.txt
├── setup.py
└── README.md
# Clone the repository
git clone https://github.com/PR-CYBR/muninn.git
cd muninn
# Install dependencies
pip install -r requirements.txt
# Install in development mode
pip install -e .
# Analyze Huginn data and generate report
python -m muninn.analyze --input data/input/huginn_output.json --output data/output/report.md
Edit config/config.yaml to customize:
Muninn expects Huginn data in JSON format:
{
"sources": [
{
"type": "web",
"url": "https://example.com",
"content": "...",
"timestamp": "2025-10-31T12:00:00Z",
"metadata": {}
}
]
}
Generated reports are in Markdown format with sections:
This project is part of the pr-cybr rav3n-n3t framework. Contributions should align with the overall architecture and security practices.
[To be determined]